Unlocking Efficiency

The Power of Vectorization

Milan Ondrašovič

PyData - 29. 2. 2024

Machine learning research engineer at ROSSUM Czech Republic, s.r.o.

Introduction

Prerequisites

Algebra NumPy

What is meant by vectorization?

Rewriting code to utilize vector operations, enabling loop execution in languages like C/C++ or Fortran to leverage SIMD instructions for computational efficiency*

Rule of thumb: "Avoid loops unless necessary!"

Motivating Example

Vectorization Demo - Task Definition

Compute a sum of squares of multiple numbers

Let $\mathbf{x} = [x_1, x_2, \dots, x_n]$ be a list of n real numbers. The sum of squares is defined as

$$s = \sum_{i=1}^n x_i^2$$

Pure Python Implementation


```
def calc_squared_sum_basic(vals):
    result = 0
    for val in vals:
        result += val ** 2
    return result
```

```
def calc_squared_sum_comprehension(vals):
    return sum(val ** 2 for val in vals)
```

Use comprehensions if appropriate

Vectorized Implementation

```
import numpy as np

def calc_squared_sum_vectorized(vals):
    return np.sum(np.asarray(vals) ** 2)
```

Benchmarking - Statistics

Minimum time in **seconds** from 10 arithmetic means of 100 function executions

Execution Time of Different Implementations Across Different Input Sizes

Common Use Cases

Adoption Among Various Libraries

- A Similar approach to vectorization "syntax", e.g.:
 - NumPy
 - PyTorch
 - TensorFlow
- many libraries are built on top of NumPy, e.g.:
 - opency-python
 - scikit-learn
 - scikit-image

DSL-Like Aspects

Writing vectorized code feels like working with a domain-specific language (DSL)★

Conciseness and expresiveness

Shift in perspective

"Standard" tooling

- High-level abstractions
- Array-oriented thinking
- Library functions and built-in operators

Use Cases for Various Roles

- Numerical computing
- Data preprocessing and Exploratory Data Analysis
- Machine learning model training and inference

Vectorization Impacts

Impacts of Vectorization On Code

Execution Speed and Loading Time

Even 1000x faster

Parallel instruction execution

Slower if used improperly

Longer loading times (heavy imports)

LOADING

Transparency

In some libraries, transparent execution on both CPU and GPU

Sometimes, need to transfer data between RAM and GPU RAM

```
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  cpu_tensor = torch.randn(3, 3)
  gpu_tensor = cpu_tensor.to(device)
```

Data Types

Internal data type-specific optimizations

Automatic conversion pitfalls

```
>>> py_list = ["ab", "cde"]
>>> py list[0] = "fghi"
>>> py_list # The first element is completely replaced
['fghi', 'cde']
>>> np_array = np.asarray(["ab", "cde"])
>>> np_array[0] = "fghi"
>>> np_array # The string is truncated - max. length is 3
array(['fgh', 'cde'], dtype='<U3')</pre>
```

Code Behavior and Error Handling

- Expected behavior across libraries
 - Less error-prone code
- Certain assumptions may mislead
- Internal errors (C/C++) are "unreadable"

To paraphrase *Donald Knuth*: "Built-in optimization *may* be the root of *some* evil"

Views Vs. Original Arrays

```
>>> py list = [1, 2, 3, 4]
>>> py_list_new = py_list[:2] # A new copy is created
>>> py_list_new[0] = 5
>>> py_list_new
[5, 2]
>>> py_list # No modification to the original data
[1, 2, 3, 4]
>>> np_array = np.asarray([1, 2, 3, 4])
>>> np_array_new = np_array[:2] # Just a view is created
>>> np array new[0] = 5
>>> np_array_new
array([5, 2])
>>> np_array # The original array has been modified
array([5, 2, 3, 4])
```

Maintenance and Portability

- Outsourcing computation to an external library
 - Often painless porting between libraries
 - Dependency on an external library
- Some operations are not available in all libraries

There is a fine line between vectorizing and obfuscating

Readability and Onboarding

- Brevity can be a blessing
- Easier knowledge transfer
 - Brevity can be a curse
- A priori knowledge of vectorization required
- Even a seasoned programmer may feel like a newbie

Broadcasting

Broadcasting

The smaller array is "broadcast" across the larger array to assure shape compatibility

The np.broadcast_to function "simulates" the effect

Fun Fact

Even some mathematical books★ have adopted the broadcasting notation to simplify formulas

Rules

Broadcasting - Single Array (1D)

```
>>> import numpy as np
>>> a = np.asarray([1, 2, 3]) # Shape: (3,)
>>> b = 2 # Equivalents: np.asarray(2), [2], (2,)
>>> a * b # (3,) * () | (3,) * (1,) | (3,) * (3,)
array([2, 4, 6])
```


Broadcasting - Single Array (2D)

Broadcasting - Both Arrays (2D)

Einstein Notation

Einstein Notation

Notational convention that implies summation over a set of indexed terms, thus achieving brevity

$$y = \sum_{i=1}^3 c_i \mathbf{x}^i = c_1 \mathbf{x}^1 + c_2 \mathbf{x}^2 + c_3 \mathbf{x}^3$$

is simplified into

$$y=c_i\mathbf{x}^i$$

Einstein Summation

Concise and efficient method for various tensor operations utilizing string notation to specify indexing

Advice: If possible, standard functions should be preferred to np.einsum

Element Sum (Example)

```
>>> import numpy as np
>>> arr = np.asarray([[1, 2, 3], [4, 5, 6]])
>>> np.einsum("ij ->", arr)
21
>>> np.sum(arr)
21
```

Matrix Multiplication (Example)

Transpose of a Matrix (Example)

Einstein "Operations" Notation

String-based notation (similar to Einstein's) to perform various tensor operations

```
>>> import numpy as np
>>> from einops import rearrange, reduce, repeat
>>> img = np.random.random((128, 256, 3)) # Shape: (height, width, n_channels)
>>> rearrange(img, "height width n_channels -> n_channels height width").shape
(3, 128, 256)
>>> reduce(img, "height width n_channels -> width height", "max").shape
(256, 128)
>>> repeat(img, "height width n_channels -> height (tile width) n_channels", tile=2).shape
(128, 512, 3)
```

Other Performance Tips

Row-major order

Column-major order

Row-major vs. Column-major

C-contiguous: row-major (default)

Fortran-contiguous: column-major

Modifying Arrays

Arrays allocated as a contiguous block of memory

Avoid resizing memory in a loop - if needed, **pre-allocate** it using np.empty and then fill in place

		Memory order	
		Row-major	Column-major
Stacking direction -	Vertical	X	X
	Horizontal	×	X

View vs. Copy

```
import numpy as np
arr = np.asarray([1, 2, 3, 4, 5, 6]) # `np.asarray` does not copy, `np.array` does
```

```
sliced_arr = arr[1:4] # VIEW
reshaped_arr = arr.reshape(2, -1) # VIEW | Shape: (2, 3)
transposed_arr = arr[np.newaxis].T # VIEW | Shape: (6, 1)
raveled_arr = orig_arr.ravel() # VIEW | Shape: (6,)
```

```
mask_selected_arr = arr[[False, True, True, True, False, False]] # COPY
fancy_indexed_arr = arr[[1, 2, 3]] # COPY
flattened_arr = orig_arr.flatten() # COPY | Shape: (6,)
```

Unbuffered In-place Operations

Family of *universal functions*★: np.ufunc.at , np.ufunc.reduce , np.ufunc.accumulate , etc.

```
>>> import numpy as np
>>> arr_buffered = np.asarray([1, 2, 3, 4, 5])
>>> arr_buffered[[0, 0, 0]] += 1  # BUFFERING increments only once (keeps track)
>>> arr_buffered
array([2, 2, 3, 4, 5])
>>> arr_unbuffered = np.asarray([1, 2, 3, 4, 5])
>>> np.add.at(arr_unbuffered, [0, 0, 0], 1)  # No BUFFERING increments 3 times
>>> arr_unbuffered
array([4, 2, 3, 4, 5])  # First element: 1 + (3 * 1) = 4
```

Prefer Numerically Stable **Functions**

CO

Overflow

Underflow

- \circ np.exp(x) 1 \triangle , np.expm1(x) \checkmark

 \circ np.log(1 + x) \triangle , np.logp1(x) \checkmark

and many others...

Some mathematical operations have their **numerically stable counterparts** - look for them

Making Vectorization Easier

Harnessing jupyter 's Power

Interactive mode - data inspection

Visualization - plotting

Data shape exploration

Map/Reduce Patterns

Map (dimension preserving)

Reduce (dimension reducing)

Reduction happens along an axis parameter (keepdims=True possible)

Commenting Tensor Shapes

- Consider adding shapes as a comment
 - o single-letter: # (R, C)
 - o variable name (preferred): # (n_rows, n_cols)

```
def softmax(logits: np.ndarray) -> np.ndarray:
    """Transform `logits` of shape `(n_rows, n_cols)` using softmax."""
    scores = np.exp(logits) # (n_rows, n_cols)
    row_sums = np.sum(scores, axis=1, keepdims=True) # (n_rows, 1)
    eps = np.finfo(np.float32).eps
    probabilities = scores / (row_sums + eps) # (n_rows, n_cols)
    return probabilities
```

Using Advanced Type Hints

```
from typing import Annotated, Literal, TypeVar
import numpy as np
import numpy.typing as npt

DType = TypeVar("DType", bound=np.generic)

Array4 = Annotated[npt.NDArray[DType], Literal[4]]
Array3x3 = Annotated[npt.NDArray[DType], Literal[3, 3]]
ArrayNxNx3 = Annotated[npt.NDArray[DType], Literal["N", "N", 3]]
```

Conclusion

Vectorization - Conclusion

- 🕲 Useful for **performance-demanding** applications
 - Looping is performed in low-level languages
- Potential to vastly improve the solution
- - Beware of underlying differences
- 📓 It has become an industry "standard"
- Plenty of resources, solid community support
 - It is just a tool, so don't eat soup with a fork