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Introduction



Introduction - Prerequisite Knowledge

Prerequisites

Q H3

E
Python NumPy Algebra

https://python.org | https://numpy.org



https://python.org/
https://numpy.org/

What is meant by vectorization?

Rewriting code to utilize vector operations, enabling
loop execution in languages like C/C++ or Fortran to
leverage SIMD instructions for computational
efficiency*

Rule of thumb: "Avoid loops unless necessary!"

*It's not image conversion (bitmap to vector representation) or a matrix transformation (matrix to column vector)



Motivating Example



Vectorization Demo - Task Definition

Compute a sum of squares of multiple numbers

Let x = |21, x2,...,x,| be a list of n real numbers. The
sum of squares is defined as

n
i 2
5= E T;
il



Vectorization Example - "Sum of Squares” Task

Pure Python Implementation

def calc _squared sum basic(vals):
result = 0
for val in vals:
result += val ** 2
return result

def calc squared sum comprehension(vals):
return sum(val ** 2 for val in vals)

Use comprehensions if appropriate

Comprehensions are concise and often faster (with exceptions... like this one @)



Vectorization Example - "Sum of Squares” Task

Vectorized Implementation

import numpy as np

def calc squared sum vectorized(vals):
return np.sum(np.asarray(vals) ** 2)



Benchmarking - Statistics

Minimum time in seconds from 10 arithmetic means of 100 function executions

Execution Time of Different Implementations Across Different Input Sizes

e loop 9465.5775
I comprehension 8755.5206
pw vectorized
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I
£
o 6000 1
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= time time time
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Q
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w
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v 871.5989 942.1659 v v
. 88.1747 94.7704 0.6063 3.4146 48.3845
1.0e+04 1.0e+05 1.0e+06

Input Size

Hardware Specification: CPU: AMD Ryzen™ 5 5500, 6 cores/12 threads, Max. boost clock 4.2GHz, L2 cache 3MB



Common Use Cases



Adoption Among Various Libraries

e 2 Similar approach to vectorization "syntax", e.g.:

© NumPy
o PyTorch
o TensorFlow

e Ml Many libraries are built on top of NumPy, e.g.:

o opencv-python
o scikit-learn
o scikit-image

There are countless of libraries already encompassing plethora of applications
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https://numpy.org/doc/
https://pytorch.org/
https://www.tensorflow.org/
https://pypi.org/project/opencv-python/
https://scikit-learn.org/stable/
https://scikit-image.org/

DSL-Like Aspects

Writing vectorized code feels like
working with a domain-specific
language (DSL) %

* This is just a personal feeling, not a general statement
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% L2 «
Conciseness Shift Iin "Standard"
and perspective tooling

expresiveness

e High-level abstractions
e Array-oriented thinking
e Library functions and built-in operators
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Use Cases for Various Roles

Programmers Data scientists ML engineers

e Numerical computing
e Data preprocessing and Exploratory Data Analysis
e Machine learning model training and inference

This list of roles and applications is just illustrative, not exhaustive @
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Vectorization Impacts



Impacts of Vectorization On Code

® | &
Execution Implementation Codebase
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Impacts On Code Execution

Execution Speed and Loading Time

These statements generally hold true, but sometimes they don't (exceptions exist)
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Impacts On Code Execution

Transparency

import torch

device = torch.device("cuda” if torch.cuda.is available() else "cpu")
cpu_tensor = torch.randn(3, 3)
gpu_tensor = cpu_tensor.to(device)

For certain Mac GPU @ devices, there is torch.device("mps") (Metal Performance Shaders) | https://pytorch.org/
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https://pytorch.org/

Impacts On Code Execution

Data Types

>>> py_list = ["ab", "cde"]

>>> py_list[0] = "fghi”

>>> py_list # The first element is completely replaced
["fghi', 'cde']

>>> np_array = np.asarray(["ab", "cde"])

>>> np_array[@] = "fghi”

>>> np_array # The string is truncated - max. length is 3
array([ 'fgh', 'cde'], dtype='<U3")

Underlying optimizations with respect to data types might violate some Pythonic assumptions @




Impacts On Code Execution

Code Behavior and Error Handling

To paraphrase Donald Knuth:
"Built-in optimization may be the root of some evil"

Example on the next slide ¥
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>>>
>>>
>>>
>>>
[5,
>>>

[1,

>>>
>>>
>>>
>>>

Views Vs. Original Arrays

py list = [1, 2, 3, 4]

py list new = py list[:2]
py list new[0] = 5

py list new

2]

py list

2, 3, 4]

np_array = np.asarray([1, 2, 3, 4])
np_array _new = np_array[:2]
np_array _new[0] = 5

np_array_new

array([5, 2])

>>>

np_array

array([5, 2, 3, 4])

It's better to assume that you are working with a view, unless proven otherwise



Impacts On Codebase

Maintenance and Portability

There is a fine line between vectorizing and
obfuscating

In this regard, if something goes wrong, then it does so spectacularly! &
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Impacts On Codebase

Readability and Onboarding

Even a seasoned programmer may feel like a newbie

23



Broadcasting



Broadcasting

The smaller array 1s “broadcast” across the larger
array to assure shape compatibility

The np.broadcast _to function "simulates" the effect

Fun Fact

Even some mathematical books* have adopted the
broadcasting notation to simplify formulas

* For example, the book "Deep Learning" by |. Goodfellow, Y. Bengio, and A. Courville 25
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¥

Shape alignment
(left padding)
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(element-wise loop)
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Broadcastable arrays
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Rules
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Broadcasting - Single Array (1D)

>>> import numpy as np

>>> a = np.asarray([1, 2, 3])
>>> b = 2

>>> a *b

array([2, 4, 6])

stretch

27



Broadcasting - Single Array (2D)

>>> import numpy as np

>>> a = np.asarray([[0, 0, 0], [10, 10, 10], [20, 20, 20], [30, 30, 30]])
>>> b = np.asarray([1, 2, 3])

>>>a+ b

array([[ 1, 2, 3],

[11, 12, 13],
[21, 22, 23],
EXTEYIEEND)

11 12 13

21 22 23

31 32 33
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Broadcasting - Both Arrays (2D)

>>> import numpy as np
>>> a = np.asarray([9, 10, 20, 30])[..., np.newaxis]
>>> b = np.asarray([1, 2, 3])
>>> a+ b
array([[ 1, 2, 3],
[11, 12, 13],
[21, 22, 23],
[31, 32, 33]])

stretch

11 12 13

Yyoja.js
I

21 22 23

31 32 33

A4, 1T ]wes=Rid o 3 —-Bl[4,3]



Einstein Notation



Einstein Notation

Notational convention that implies summation over
a set of indexed terms, thus achieving brevity

3
0= E c;x' = c1x! + c9x? + 3%’
i=1

Is simplified into
Y= cix*

https://en.wikipedia.org/wiki/Einstein_notation
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https://en.wikipedia.org/wiki/Einstein_notation

Einstein Summation Notation/Convention

Einstein Summation

Concise and efficient method for various
tensor operations utilizing string
notation to specify indexing

Advice: If possible, standard functions
should be preferred to np.einsum
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>>>
>>>
>>>
21
>>>
21

Element Sum (Example)

import numpy as np
arr = np.asarray([[1, 2, 3], [4, 5, 6]])
np.einsum("ij ->", arr)

np.sum(arr)

33



Matrix Multiplication (Example)

>>> import numpy as np

>>> a = np.asarray([[1, 2, 3], [4, 5, 6]])
>>> b = np.asarray([[1, 2], [3, 4], [5, ©€]1])
>>> np.einsum("ik, kj -> i7", a, b)
array([[22, 28],
49, 64]1)
>>> np.matmul(a, b)
array([[22, 28],

(49, 64]])
k J J
> —_— —_—
112 | 3 1| 2 22 | 28
1 x prm— 1
4 | 51| 6 k|| 3| 4 49 | 64
51 6




—> Transpose of a Matrix (Example)
1 2 3
4 | 5| 6 >>> import numpy as np
\ >>> arr = np.asarray([[1, 2, 3], [4, 5, 6]])
& rranapose § >>> np.einsum("ji", arr)
X array([[1, 41,
> [2, 5],
[3, 611)
_ 1] 4 >>> np.transpose(arr)
| array([[1, 4],
[2, 5],
B [3, 611)

For arbitrary swapping of axes, see np.swapaxes 35



Einstein "Operations” Notation

String-based notation (similar to Einstein's) to
perform various tensor operations K

>>> import numpy as np

>>> from einops import rearrange, reduce, repeat

>>> img = np.random.random( (128, 256, 3))

>>> rearrange(img, "height width n_channels -> n_channels height width").shape

(3, 128, 256)

>>> reduce(img, "height width n_channels -> width height", "max").shape

(256, 128)

>>> repeat(img, "height width n_channels -> height (tile width) n_channels", tile=2).shape
(128, 512, 3)

Supports NumPy, PyTorch, TensorFlow, JAX, and others & | https://pypi.org/project/einops/ 36


https://pypi.org/project/einops/

Other Performance Tips



Row-major order

Row-major vs. Column-major

C-contiguous: row-major (default)

Fortran-contiguous: column-major

>>> import numpy as np
>>> np.arange(6).reshape(2, 3, order="C")

array ([

[0, 1, 2]
(3, 4, 5]

1)

>>> np.arange(6).reshape(2, 3, order="F")

array ([

[0, 2, 4]

(1, 3, 5]

J

1)

Beware of memory spatial and temporal locality - big arrays, big difference!® 38



Modifying Arrays

Arrays allocated as a contiguous block of memory

Avoid resizing memory in a loop - if needed, pre-
allocate it using np.empty and then fill in place

Memory order

Row-major Column-major

Vertical X

Stacking direction

Horizontal .

® np.hstack , np.vstack, and np.stack use np.concatenate internally - axis and memory order impact the speed

39



View vs. Copy

import numpy as np
arr = np.asarray([1, 2, 3, 4, 5, 6])

sliced arr = arr[1:4]

reshaped_arr = arr.reshape(2, -1)
transposed_arr = arr[np.newaxis].T
raveled arr = orig arr.ravel()

mask selected arr = arr[[False, True, True, True, False, False]]
fancy_indexed_arr = arr[[1l, 2, 3]]
flattened arr = orig arr.flatten()

® Use new_arr.base is orig_arr to test whether new_arr is just a view of orig_arr and not a new copy

40



Unbuffered In-place Operations

Family of universal functions*: np.ufunc.at ,
np.ufunc.reduce, np.ufunc.accumulate , etc.

>>> import numpy as np

>>> arr_buffered = np.asarray([1, 2, 3, 4, 5])
>>> arr_buffered[[0, 0, 0]] += 1

>>> arr_buffered

array([2, 2, 3, 4, 5])

>>> arr_unbuffered = np.asarray([1, 2, 3, 4, 5])
>>> np.add.at(arr_unbuffered, [0, 0, 0], 1)

>>> arr_unbuffered

array([4, 2, 3, 4, 5])

® xUniversal function ( ufunc ) - operates on ndarrays in an element-by-element fashion 41



Prefer Numerically Stable

Functions
0
Overflow Underflow
e ¥ —1
o np.exp(x) - 1 A, np.expml(x) &
e log (1 + x)

o np.log(l + x) A, np.logpl(x) &
e and many others... @

® Some mathematical operations have their numerically stable counterparts - look for them

42



Making Vectorization Easier



Making Vectorization Easier - A Few Hints Out of Many

Harnessing jupyter 's Power

&
Interactive mode - data inspection

Visualization - plotting

Q

Data shape exploration

Expedite your implementation by on-the-fly interaction with code

44



Map/Reduce Patterns

Map Reduce
(dimension preserving) (dimension reducing)

>>> import numpy as np
>>> vals = np.asarray([[1, 2, 3], [4, 5, 6]])
>>> np.power(vals, 2)
array([[ 1, 4, 9],
[16, 25, 36]])
>>> np.sum(vals, axis=1)
array([ 6, 15])

Reduction happens along an axis parameter ( keepdims=True possible)
Array operations can generally be grouped into "mapping"” and "reducing"” | https://en.wikipedia.org/wiki/MapReduce 45


https://en.wikipedia.org/wiki/MapReduce

Commenting Tensor Shapes

e Consider adding shapes as a comment
o single-letter. # (R, C)
o variable name (preferred): # (n_rows, n_cols)

def softmax(logits: np.ndarray) -> np.ndarray:
"""Transform "logits  of shape " (n_rows, n_cols) using softmax.
scores = np.exp(logits)
row_sums = np.sum(scores, axis=1, keepdims=True)
eps = np.finfo(np.float32).eps
probabilities = scores / (row_sums + eps)
return probabilities

Always keep your documentation and comments up to date - if they lie, it is worse than nothing! A 46



Using Advanced Type Hints

from typing import Annotated, Literal, TypeVar
import numpy as np
import numpy.typing as npt

DType = TypeVar("DType", bound=np.generic)
Array4 = Annotated[npt.NDArray[DType], Literal[4]]

Array3x3 = Annotated[npt.NDArray[DType], Literal[3, 3]]
ArrayNxNx3 = Annotated[npt.NDArray[DType], Literal["N", "N", 3]]

® Not very common approach, just be aware of its existence

47



Conclusion



Vectorization - Conclusion

Useful for performance-demanding applications
o @ Looping is performed in low-level languages
€& Potential to vastly improve the solution

@ Educational value - learn the basic principles

o  Beware of underlying differences

B It has become an industry "standard”

&= Plenty of resources, solid community support

It is just a tool, so don't eat soup with a fork

Thank you very much for any kind of attention! & | Milan Ondrasovi¢ | milan.ondrasovic@gmail.com
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