U nloc k| n g Ef f| c | e n .

The Po wer of Vectortzatton'. '

Mtlan Ondrasowc
e _,'f} }‘ ', p y~Dj.a;t. a 29_ 7.- 2. 2024

: M'-a';:(::jlii',h_'é[.ﬂlévfa_i"'f.r’:i’q§"vfese"av'r'ch engineer at ROSSUM Czech Republic, s.r.o.

e = "m"irl'a.h'.ondrasovic@gméil.cbm | B https://github.com/mondrasovic

https://rossum.ai/
mailto:milan.ondrasovic@gmail.com
https://github.com/mondrasovic

Introduction

Introduction - Prerequisite Knowledge

Prerequisites

Q H3

E
Python NumPy Algebra

https://python.org | https://numpy.org

https://python.org/
https://numpy.org/

What is meant by vectorization?

Rewriting code to utilize vector operations, enabling
loop execution in languages like C/C++ or Fortran to
leverage SIMD instructions for computational
efficiency*

Rule of thumb: "Avoid loops unless necessary!"

*It's not image conversion (bitmap to vector representation) or a matrix transformation (matrix to column vector)

Motivating Example

Vectorization Demo - Task Definition

Compute a sum of squares of multiple numbers

Let x = |21, x2,...,x,| be a list of n real numbers. The
sum of squares is defined as

n
i 2
5= E T;
il

Vectorization Example - "Sum of Squares” Task

Pure Python Implementation

def calc _squared sum basic(vals):
result = 0
for val in vals:
result += val ** 2
return result

def calc squared sum comprehension(vals):
return sum(val ** 2 for val in vals)

Use comprehensions if appropriate

Comprehensions are concise and often faster (with exceptions... like this one @)

Vectorization Example - "Sum of Squares” Task

Vectorized Implementation

import numpy as np

def calc squared sum vectorized(vals):
return np.sum(np.asarray(vals) ** 2)

Benchmarking - Statistics

Minimum time in seconds from 10 arithmetic means of 100 function executions

Execution Time of Different Implementations Across Different Input Sizes

e loop 9465.5775
I comprehension 8755.5206
pw vectorized
8000 A
I
£
o 6000 1
§ Minimum Minimum Min_imum
= time time time
S
5 4000 -
(9}
Q
X
w
2000 A
v 871.5989 942.1659 v v
. 88.1747 94.7704 0.6063 3.4146 48.3845
1.0e+04 1.0e+05 1.0e+06

Input Size

Hardware Specification: CPU: AMD Ryzen™ 5 5500, 6 cores/12 threads, Max. boost clock 4.2GHz, L2 cache 3MB

Common Use Cases

Adoption Among Various Libraries

e 2 Similar approach to vectorization "syntax", e.g.:

© NumPy
o PyTorch
o TensorFlow

e Ml Many libraries are built on top of NumPy, e.g.:

o opencv-python
o scikit-learn
o scikit-image

There are countless of libraries already encompassing plethora of applications

11

https://numpy.org/doc/
https://pytorch.org/
https://www.tensorflow.org/
https://pypi.org/project/opencv-python/
https://scikit-learn.org/stable/
https://scikit-image.org/

DSL-Like Aspects

Writing vectorized code feels like
working with a domain-specific
language (DSL) %

* This is just a personal feeling, not a general statement

12

% L2 «
Conciseness Shift Iin "Standard"
and perspective tooling

expresiveness

e High-level abstractions
e Array-oriented thinking
e Library functions and built-in operators

13

Use Cases for Various Roles

Programmers Data scientists ML engineers

e Numerical computing
e Data preprocessing and Exploratory Data Analysis
e Machine learning model training and inference

This list of roles and applications is just illustrative, not exhaustive @

14

Vectorization Impacts

Impacts of Vectorization On Code

® | &
Execution Implementation Codebase

16

Impacts On Code Execution

Execution Speed and Loading Time

These statements generally hold true, but sometimes they don't (exceptions exist)

17

Impacts On Code Execution

Transparency

import torch

device = torch.device("cuda” if torch.cuda.is available() else "cpu")
cpu_tensor = torch.randn(3, 3)
gpu_tensor = cpu_tensor.to(device)

For certain Mac GPU @ devices, there is torch.device("mps") (Metal Performance Shaders) | https://pytorch.org/

18

https://pytorch.org/

Impacts On Code Execution

Data Types

>>> py_list = ["ab", "cde"]

>>> py_list[0] = "fghi”

>>> py_list # The first element is completely replaced
["fghi', 'cde']

>>> np_array = np.asarray(["ab", "cde"])

>>> np_array[@] = "fghi”

>>> np_array # The string is truncated - max. length is 3
array(['fgh', 'cde'], dtype='<U3")

Underlying optimizations with respect to data types might violate some Pythonic assumptions @

Impacts On Code Execution

Code Behavior and Error Handling

To paraphrase Donald Knuth:
"Built-in optimization may be the root of some evil"

Example on the next slide ¥

20

>>>
>>>
>>>
>>>
[5,
>>>

[1,

>>>
>>>
>>>
>>>

Views Vs. Original Arrays

py list = [1, 2, 3, 4]

py list new = py list[:2]
py list new[0] = 5

py list new

2]

py list

2, 3, 4]

np_array = np.asarray([1, 2, 3, 4])
np_array _new = np_array[:2]
np_array _new[0] = 5

np_array_new

array([5, 2])

>>>

np_array

array([5, 2, 3, 4])

It's better to assume that you are working with a view, unless proven otherwise

Impacts On Codebase

Maintenance and Portability

There is a fine line between vectorizing and
obfuscating

In this regard, if something goes wrong, then it does so spectacularly! &

22

Impacts On Codebase

Readability and Onboarding

Even a seasoned programmer may feel like a newbie

23

Broadcasting

Broadcasting

The smaller array 1s “broadcast” across the larger
array to assure shape compatibility

The np.broadcast _to function "simulates" the effect

Fun Fact

Even some mathematical books* have adopted the
broadcasting notation to simplify formulas

* For example, the book "Deep Learning" by |. Goodfellow, Y. Bengio, and A. Courville 25

y L
Tensor 1

y A
Tensor 2

¥

Shape alignment
(left padding)

Comparison of each dimension

v

(element-wise loop)

\J
4

Broadcastable arrays

)¢

Error:
incompatible
shapes

\[e)

Broadcasting

Rules

26

Broadcasting - Single Array (1D)

>>> import numpy as np

>>> a = np.asarray([1, 2, 3])
>>> b = 2

>>> a *b

array([2, 4, 6])

stretch

27

Broadcasting - Single Array (2D)

>>> import numpy as np

>>> a = np.asarray([[0, 0, 0], [10, 10, 10], [20, 20, 20], [30, 30, 30]])
>>> b = np.asarray([1, 2, 3])

>>>a+ b

array([[1, 2, 3],

[11, 12, 13],
[21, 22, 23],
EXTEYIEEND)

11 12 13

21 22 23

31 32 33

28

Broadcasting - Both Arrays (2D)

>>> import numpy as np
>>> a = np.asarray([9, 10, 20, 30])[..., np.newaxis]
>>> b = np.asarray([1, 2, 3])
>>> a+ b
array([[1, 2, 3],
[11, 12, 13],
[21, 22, 23],
[31, 32, 33]])

stretch

11 12 13

Yyoja.js
I

21 22 23

31 32 33

A4, 1T]wes=Rid o 3 —-Bl[4,3]

Einstein Notation

Einstein Notation

Notational convention that implies summation over
a set of indexed terms, thus achieving brevity

3
0= E c;x' = c1x! + c9x? + 3%’
i=1

Is simplified into
Y= cix*

https://en.wikipedia.org/wiki/Einstein_notation

31

https://en.wikipedia.org/wiki/Einstein_notation

Einstein Summation Notation/Convention

Einstein Summation

Concise and efficient method for various
tensor operations utilizing string
notation to specify indexing

Advice: If possible, standard functions
should be preferred to np.einsum

32

>>>
>>>
>>>
21
>>>
21

Element Sum (Example)

import numpy as np
arr = np.asarray([[1, 2, 3], [4, 5, 6]])
np.einsum("ij ->", arr)

np.sum(arr)

33

Matrix Multiplication (Example)

>>> import numpy as np

>>> a = np.asarray([[1, 2, 3], [4, 5, 6]])
>>> b = np.asarray([[1, 2], [3, 4], [5, ©€]1])
>>> np.einsum("ik, kj -> i7", a, b)
array([[22, 28],
49, 64]1)
>>> np.matmul(a, b)
array([[22, 28],

(49, 64]])
k J J
> —_— —_—
112 | 3 1| 2 22 | 28
1 x prm— 1
4 | 51| 6 k|| 3| 4 49 | 64
51 6

—> Transpose of a Matrix (Example)
1 2 3
4 | 5| 6 >>> import numpy as np
\ >>> arr = np.asarray([[1, 2, 3], [4, 5, 6]])
& rranapose § >>> np.einsum("ji", arr)
X array([[1, 41,
> [2, 5],
[3, 611)
_ 1] 4 >>> np.transpose(arr)
| array([[1, 4],
[2, 5],
B [3, 611)

For arbitrary swapping of axes, see np.swapaxes 35

Einstein "Operations” Notation

String-based notation (similar to Einstein's) to
perform various tensor operations K

>>> import numpy as np

>>> from einops import rearrange, reduce, repeat

>>> img = np.random.random((128, 256, 3))

>>> rearrange(img, "height width n_channels -> n_channels height width").shape

(3, 128, 256)

>>> reduce(img, "height width n_channels -> width height", "max").shape

(256, 128)

>>> repeat(img, "height width n_channels -> height (tile width) n_channels", tile=2).shape
(128, 512, 3)

Supports NumPy, PyTorch, TensorFlow, JAX, and others & | https://pypi.org/project/einops/ 36

https://pypi.org/project/einops/

Other Performance Tips

Row-major order

Row-major vs. Column-major

C-contiguous: row-major (default)

Fortran-contiguous: column-major

>>> import numpy as np
>>> np.arange(6).reshape(2, 3, order="C")

array ([

[0, 1, 2]
(3, 4, 5]

1)

>>> np.arange(6).reshape(2, 3, order="F")

array ([

[0, 2, 4]

(1, 3, 5]

J

1)

Beware of memory spatial and temporal locality - big arrays, big difference!® 38

Modifying Arrays

Arrays allocated as a contiguous block of memory

Avoid resizing memory in a loop - if needed, pre-
allocate it using np.empty and then fill in place

Memory order

Row-major Column-major

Vertical X

Stacking direction

Horizontal .

® np.hstack , np.vstack, and np.stack use np.concatenate internally - axis and memory order impact the speed

39

View vs. Copy

import numpy as np
arr = np.asarray([1, 2, 3, 4, 5, 6])

sliced arr = arr[1:4]

reshaped_arr = arr.reshape(2, -1)
transposed_arr = arr[np.newaxis].T
raveled arr = orig arr.ravel()

mask selected arr = arr[[False, True, True, True, False, False]]
fancy_indexed_arr = arr[[1l, 2, 3]]
flattened arr = orig arr.flatten()

® Use new_arr.base is orig_arr to test whether new_arr is just a view of orig_arr and not a new copy

40

Unbuffered In-place Operations

Family of universal functions*: np.ufunc.at ,
np.ufunc.reduce, np.ufunc.accumulate , etc.

>>> import numpy as np

>>> arr_buffered = np.asarray([1, 2, 3, 4, 5])
>>> arr_buffered[[0, 0, 0]] += 1

>>> arr_buffered

array([2, 2, 3, 4, 5])

>>> arr_unbuffered = np.asarray([1, 2, 3, 4, 5])
>>> np.add.at(arr_unbuffered, [0, 0, 0], 1)

>>> arr_unbuffered

array([4, 2, 3, 4, 5])

® xUniversal function (ufunc) - operates on ndarrays in an element-by-element fashion 41

Prefer Numerically Stable

Functions
0
Overflow Underflow
e ¥ —1
o np.exp(x) - 1 A, np.expml(x) &
e log (1 + x)

o np.log(l + x) A, np.logpl(x) &
e and many others... @

® Some mathematical operations have their numerically stable counterparts - look for them

42

Making Vectorization Easier

Making Vectorization Easier - A Few Hints Out of Many

Harnessing jupyter 's Power

&
Interactive mode - data inspection

Visualization - plotting

Q

Data shape exploration

Expedite your implementation by on-the-fly interaction with code

44

Map/Reduce Patterns

Map Reduce
(dimension preserving) (dimension reducing)

>>> import numpy as np
>>> vals = np.asarray([[1, 2, 3], [4, 5, 6]])
>>> np.power(vals, 2)
array([[1, 4, 9],
[16, 25, 36]])
>>> np.sum(vals, axis=1)
array([6, 15])

Reduction happens along an axis parameter (keepdims=True possible)
Array operations can generally be grouped into "mapping"” and "reducing"” | https://en.wikipedia.org/wiki/MapReduce 45

https://en.wikipedia.org/wiki/MapReduce

Commenting Tensor Shapes

e Consider adding shapes as a comment
o single-letter. # (R, C)
o variable name (preferred): # (n_rows, n_cols)

def softmax(logits: np.ndarray) -> np.ndarray:
"""Transform "logits of shape " (n_rows, n_cols) using softmax.
scores = np.exp(logits)
row_sums = np.sum(scores, axis=1, keepdims=True)
eps = np.finfo(np.float32).eps
probabilities = scores / (row_sums + eps)
return probabilities

Always keep your documentation and comments up to date - if they lie, it is worse than nothing! A 46

Using Advanced Type Hints

from typing import Annotated, Literal, TypeVar
import numpy as np
import numpy.typing as npt

DType = TypeVar("DType", bound=np.generic)
Array4 = Annotated[npt.NDArray[DType], Literal[4]]

Array3x3 = Annotated[npt.NDArray[DType], Literal[3, 3]]
ArrayNxNx3 = Annotated[npt.NDArray[DType], Literal["N", "N", 3]]

® Not very common approach, just be aware of its existence

47

Conclusion

Vectorization - Conclusion

Useful for performance-demanding applications
o @ Looping is performed in low-level languages
€& Potential to vastly improve the solution

@ Educational value - learn the basic principles

o Beware of underlying differences

B It has become an industry "standard”

&= Plenty of resources, solid community support

It is just a tool, so don't eat soup with a fork

Thank you very much for any kind of attention! & | Milan Ondrasovi¢ | milan.ondrasovic@gmail.com

49

mailto:milan.ondrasovic@gmail.com

